Coumarin derivatives bearing benzoheterocycle moiety: synthesis, cholinesterase inhibitory, and docking simulation study
نویسندگان
چکیده
OBJECTIVES To investigate the efficiency of a novel series of coumarin derivatives bearing benzoheterocycle moiety as novel cholinesterase inhibitors. MATERIALS AND METHODS Different 7-hydroxycoumarin derivatives were synthesized via Pechmann or Knoevenagel condensation and conjugated to different benzoheterocycle (8-hydroxyquinoline, 2-mercaptobenzoxazole or 2-mercaptobenzimidazole) using dibromoalkanes 3a-m: Final compounds were evaluated against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) by Ellman's method. Kinetic study of AChE inhibition and ligand-protein docking simulation were also carried out for the most potent compound 3b. RESULTS Some of the compounds revealed potent and selective activity against AChE. Compound 3b containing the quinoline group showed the best activity with an IC50 value of 8.80 μM against AChE. Kinetic study of AChE inhibition revealed the mixed-type inhibition of the enzyme by compound 3b. Ligand-protein docking simulation also showed that the flexibility of the hydrophobic five carbons linker allows the quinoline ring to form π-π interaction with Trp279 in the PAS. CONCLUSION We suggest these synthesized compounds could become potential leads for AChE inhibition and prevention of AD symptoms.
منابع مشابه
Coumarin derivatives bearing benzoheterocycle moiety: synthesis, cholinesterase inhibitory, and docking simulation study
Objective(s): To investigate the efficiency of a novel series of coumarin derivatives bearing benzoheterocycle moiety as novel cholinesterase inhibitors. Materials and Methods: Different 7-hydroxycoumarin derivatives were synthesized via Pechmann or Knoevenagel condensation and conjugated to different benzoheterocycle (8-hydroxyquinoline, 2-mercaptobenzoxazole or 2-mercaptobenzimidazole) using ...
متن کاملCholinesterase Inhibition Activity and Docking Simulation Study of Coumarin Mannich Base Derivatives
Inhibition of acetylcholinesterase and butyrylcholinesterase (AChE and BuChE) as two major forms of cholinesterases (ChEs) is considered as the common approach for the treatment of Alzheimer's disease (AD). The present study was done to explore the anticholinesterase inhibition property of coumarin Mannich base derivatives. A series of cumarin Manich bases were synthesized (4a-h) through one-po...
متن کاملSynthesis novel bis-Coumarin derivatives as potential acetylcholinestrase inhibitors: An in vitro, molecular docking, and molecular dynamics simulations study
Alzheimer's disease is an irreversible and progressive brain disorder that slowly destroys memory and thinking skills and ultimately the ability to do the simplest things and can lead to death. Cholinesterases (ChEs) play an important role in controlling cholinergic transmission, and subsequently, by inhibiting CHEs, acetylcholine levels in the brain are elevated. Coumarins have been shown to e...
متن کامل2-(2-(4-Benzoylpiperazin-1-yl)ethyl)isoindoline-1,3-dione derivatives: Synthesis, docking and acetylcholinesterase inhibitory evaluation as anti-alzheimer agents
Objective(s): Alzheimer’s disease (AD) as progressive cognitive decline and the most common form of dementia is due to degeneration of the cholinergic neurons in the brain. Therefore, administration of the acetylcholinesterase (AChE) inhibitors such as donepezil is the first choice for treatment of the AD. In the present study, we focused on the synthesis and anti-cholinesterase evaluation of n...
متن کاملSynthesis, X-Rays Analysis, Docking Study and Cholinesterase Inhibition Activity of 2,3-dihydroquinazolin-4(1H)-one Derivatives
In search of potent cholinesterase inhibitors, we have carried out the synthesis and biologically evaluation of various benzaldehyde based 2,3-dihydroquinazolin-4(1H)-one derivatives. In vitro assay results revealed that all the synthesized compounds showed activity against both enzymes (AChE and BChE) and in few cases, the inhibition activity was even higher than or comp...
متن کامل